n공간 전체에서 정의된 일급함수 \(g\)의 등위면 \(g=c\)에서 n공간의 한 점 \(P\)에 이르는 최단거리를 주는 점은 항상 존재한다. 이 때 \( \text{grad}\left( \frac 12 | X - P |^2 \right) = X - P \) 이므로, (이하로 grad는 \(\nabla\)) 최단점 \(X\)에서는 (\(\nabla g(X) = 0\)이 아니라면)
$$X-P = \lambda \nabla g(X) $$
인 실수 \(\lambda\)가 존재한다. (목적함수를 \(\frac 12 | X - P |^2\)로 잡은 것)
구체적으로,
$$ S := \{ (x_1, ... , x_n) | a_1x_1 + ... + a_nx_n = c \} $$ 라고 하자.
이 때, \( A := (a_1, ... , a_n) \)으로 두면, 점 \( P = (p_1, ... , p_n)\)과 \(S\)사이의 최단거리는
$$ X - P = \lambda A , \qquad A \cdot X = c $$
를 만족시키는 점 \(X\)와 \(P\)사이의 거리다.
양변에 \(A\)를 곱하면
$$ A \cdot (X-P) = \lambda |A|^2 $$
$$ \lambda = \frac{c - A \cdot P }{|A|^2} $$
구하는 점 X는
$$ X = P + \lambda A = P + \frac{c - A \cdot P}{|A|^2}A $$
이때의 거리는
$$ |X-P| = |\lambda A| = \frac{|c - A \cdot P|}{|A|} = \frac{|a_1p_1 + ... + a_np_n - c|}{\sqrt{a_1^2 + ... + a_n^2}}$$
Nice to meet you everyone.
I’m an engineer of Korea, working on image object recognition.
Any help (especially about my English translation) would be welcomed.
pilhoon-at-gmail-dot-com
2014년 3월 6일 목요일
2014년 3월 5일 수요일
analytic proof for Lagrange
\(P\)가 극점
함수 \(f\)가 초곡면(n공간에서 미분 가능한 등위면) \(g\)로 제한됨
\( S := \lbrace X \in U \mspace{3mu} | \mspace{3mu} g(X) = c \rbrace \)
\(\mathrm{grad}g(P) = 0\) 인 경우는 당연히 \(\mathrm{grad}f(P)\)와 일차종속( \( \lambda_1 \mathrm{grad}f(P) + \lambda_2 \mathrm{grad}g(P) = 0 \) )
아닌 경우,
점 P에서 S의 접평면의 임의의 벡터 \( v \)는, S에 포함되는 곡선 \( X(t) \)중에서
\( X(0) = P , \quad X'(0) = v \)
로 주어진다. 그러면 \( h(t) := f(X(t)) \)도 \( t=0 \)일 때 극값을 가진다. 따라서
\( 0 = h'(0) = \mathrm{grad} f(P) \cdot X'(0) \)
\( \mathrm{grad}g(P) \)도 등위면 \(S\)에 수직이므로 \(\mathrm{grad}f(P)\)와 \(\mathrm{grad}g(P)\)는 나란하다.
\(t\)는 임의로 잡은 값이므로 어떤 값이어도 무관하다.
함수 \(f\)가 초곡면(n공간에서 미분 가능한 등위면) \(g\)로 제한됨
\( S := \lbrace X \in U \mspace{3mu} | \mspace{3mu} g(X) = c \rbrace \)
\(\mathrm{grad}g(P) = 0\) 인 경우는 당연히 \(\mathrm{grad}f(P)\)와 일차종속( \( \lambda_1 \mathrm{grad}f(P) + \lambda_2 \mathrm{grad}g(P) = 0 \) )
아닌 경우,
점 P에서 S의 접평면의 임의의 벡터 \( v \)는, S에 포함되는 곡선 \( X(t) \)중에서
\( X(0) = P , \quad X'(0) = v \)
로 주어진다. 그러면 \( h(t) := f(X(t)) \)도 \( t=0 \)일 때 극값을 가진다. 따라서
\( 0 = h'(0) = \mathrm{grad} f(P) \cdot X'(0) \)
\( \mathrm{grad}g(P) \)도 등위면 \(S\)에 수직이므로 \(\mathrm{grad}f(P)\)와 \(\mathrm{grad}g(P)\)는 나란하다.
\(t\)는 임의로 잡은 값이므로 어떤 값이어도 무관하다.
피드 구독하기:
글 (Atom)